
J. Fluid Mech. (2003), vol. 475, pp. 173–203. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112002002756 Printed in the United Kingdom

173

Mixed velocity--passive scalar statistics in
high-Reynolds-number turbulence

By L. M Y D L A R S K I
Department of Mechanical Engineering, McGill University,

817 Sherbrooke Street West, Montréal, QC, H3A-2K6, Canada

(Received 30 August 2001 and in revised form 9 August 2002)

Statistics of the mixed velocity–passive scalar field and its Reynolds number depen-
dence are studied in quasi-isotropic decaying grid turbulence with an imposed mean
temperature gradient. The turbulent Reynolds number (using the Taylor microscale as
the length scale), Rλ, is varied over the range 85 6 Rλ 6 582. The passive scalar under
consideration is temperature in air. The turbulence is generated by means of an active
grid and the temperature fluctuations result from the action of the turbulence on the
mean temperature gradient. The latter is created by differentially heating elements at
the entrance to the wind tunnel plenum chamber. The mixed velocity–passive scalar
field evolves slowly with Reynolds number. Inertial-range scaling exponents of the
co-spectra of transverse velocity and temperature, Evθ(k1), and its real-space analogue,
the ‘heat flux structure function,’ 〈∆v(r)∆θ(r)〉, show a slow evolution towards their
theoretical predictions of −7/3 and 4/3, respectively. The sixth-order longitudinal
mixed structure functions, 〈(∆u(r))2(∆θ(r))4〉, exhibit inertial-range structure function
exponents of 1.36–1.52. However, discrepancies still exist with respect to the various
methods used to estimate the scaling exponents, the value of the scalar intermittency
exponent, µθ , and the effects of large-scale phenomena (namely shear, decay and tur-
bulent production of 〈θ2〉) on 〈(∆u(r))2(∆θ(r))4〉. All the measured fine-scale statistics
required to be zero in a locally isotropic flow are, or tend towards, zero in the limit
of large Reynolds numbers. The probability density functions (PDFs) of ∆v(r)∆θ(r)
exhibit roughly exponential tails for large separations and super-exponential tails
for small separations, thus displaying the effects of internal intermittency. As the
Reynolds number increases, the PDFs become symmetric at the smallest scales – in
accordance with local isotropy. The expectation of the transverse velocity fluctuation
conditioned on the scalar fluctuation is linear for all Reynolds numbers, with slope
equal to the correlation coefficient between v and θ. The expectation of (a surrogate
of) the Laplacian of the scalar reveals a Reynolds number dependence when con-
ditioned on the transverse velocity fluctuation (but displays no such dependence when
conditioned on the scalar fluctuation). This former Reynolds number dependence is
consistent with Taylor’s diffusivity independence hypothesis. Lastly, for the statistics
measured, no violations of local isotropy were observed.

1. Introduction
The objective of this work is to examine the variation of mixed (velocity–passive

scalar) statistics in grid-generated wind tunnel turbulence with an imposed mean
scalar gradient. To this end, probability density functions (PDFs), spectra, structure
functions, small-scale statistics and conditional expectations are studied over a wide
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range of Reynolds numbers (or Péclet numbers; see below for definitions). Emphasis
is placed on the small-scale mixed velocity–passive scalar field and how its behaviour
compares with that of the (individual) velocity and passive scalar fields.

To accurately observe any evolution in turbulence statistics with a particular par-
ameter (i.e. the Reynolds number), the parameter should be varied over as large a
range as possible. Until recently, the range of obtainable Reynolds numbers in stan-
dard laboratory wind tunnels was relatively small – the highest achievable Reynolds
numbers were significantly lower than those realized in industrial and geophysical
shear flows. However, the development of ‘active grids’ by Makita (1991) has al-
lowed high-Reynolds-number homogeneous quasi-isotropic decaying turbulence to
be achieved in average-size wind tunnels (Makita 1991; Mydlarski & Warhaft 1996,
herein referred to as M&W96; Mydlarski & Warhaft 1998a, herein referred to as
M&W98). In particular, active grids have been used to investigate the effects of
variations in Reynolds number on the turbulent velocity field (M&W96) and vari-
ations in Péclet number on the turbulent scalar field (M&W98). The velocity field
was studied over the range 50 6 Rλ 6 473 in M&W96. (The Taylor-microscale-based
Reynolds number, Rλ, is defined by Rλ ≡ urmsλ/ν, where u is the longitudinal velocity
fluctuation, λ ≡ [〈u2〉/〈(∂u/∂x)2〉]1/2 and ν is the kinematic viscosity.) The passive
scalar field, generated by imposing a linear mean scalar gradient on the same flow as
in M&W96, was studied over the range 30 6 Rλ 6 731 (21 6 Peλ 6 512) in M&W98.
(The Péclet number is defined as Peλ ≡ Rλ(ν/κ), where κ is the thermal diffusivity.)
The present work can be considered as the third element in a study of the effect of
the turbulent Reynolds number on velocity and passive scalar statistics.

Before proceeding, it is worthwhile to review briefly the results of M&W96 and
M&W98 since they will be compared with the present work. In M&W96, it was shown
that the velocity field displayed significant Reynolds number dependence. Namely,
at low Reynolds numbers (i.e. Rλ ∼ 50), a weak, poorly defined inertial subrange
appeared in the power spectrum of the longitudinal velocity with a slope of about
−1.3. By Rλ ∼ 200, a well-defined inertial subrange had developed, with slope of
−1.5. At the highest Reynolds numbers achieved, the value of the scaling exponent
was approaching, but still significantly below, the −5/3 prediction of Kolmogorov
(1941a, b) – also see Monin & Yaglom (1975). The slope of the power spectrum of
the transverse velocity evolved even more slowly towards the Kolmogorov prediction.
M&W96 also showed that internal intermittency effects were a strong function of
Reynolds number. For Rλ < 100, the effects of internal intermittency were absent from
the inertial range. For Rλ > 200, the magnitude of the effects of internal intermittency
increased significantly with Reynolds number. Above, Rλ ∼ 200, Kolmogorov’s refined
similarity hypothesis (Kolmogorov 1962; Obukhov 1962) was also verified. Lastly, in
the limit of large Reynolds numbers, the flow appeared to be locally isotropic.
However, no significant large-scale (velocity field) anisotropies were present in this
decaying active-grid-generated turbulence to induce small-scale anisotropies of the
velocity field.

A significantly different behaviour of the passive scalar field was observed in
M&W98. In general, the scalar field showed very little Reynolds/Péclet number
dependence. At all Reynolds numbers, the power spectrum of the scalar fluctu-
ations displayed a broad inertial–convective range with scaling exponent close to the
Kolmogorov–Obukhov–Corrsin (KOC) prediction of −5/3 (Kolmogorov 1941a, b;
Obukhov 1949; Corrsin 1951 – also see Monin & Yaglom 1975). The effects of
internal intermittency were observed at all Reynolds numbers and their intensity was
not strongly Reynolds number dependent (and roughly equal to that observed in
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atmospheric flows). In addition, the passive scalar field exhibited notable Reynolds-
number-independent anisotropies – a clear violation of the postulate of local isotropy.
Odd-ordered structure functions displayed well-defined scaling regions that scaled
in a manner inconsistent with the notion of local isotropy. The scalar derivative
skewness (measured in the direction of the mean gradient) was order one and
Reynolds-number-independent – notably different from the zero value it must acquire
in a locally isotropic flow. The ratio of the temperature derivative standard deviation
along the gradient to that normal to the gradient was 1.2± 0.1. (In an isotropic flow,
it should be 1.)

This anisotropy is probably ‘inherited’ from the presence of a large-scale anisotropy –
the mean temperature gradient. In the velocity field under consideration, no large-scale
anisotropy exists to ‘contaminate’ the small scales. Pumir & Shraiman (1995), Pumir
(1996), Garg & Warhaft (1998), Shen & Warhaft (2000), Ferchichi & Tavoularis (2000)
and Warhaft & Shen (2001) have studied in detail the postulate of local isotropy
in homogeneous shear flow – where a mean velocity gradient is present in one di-
rection. The general consensus is that the velocity field may also exhibit persistent,
Reynolds-number-independent anisotropies. However, the velocity field anisotropies
are less pronounced since they only occur for higher orders than the anisotropies
observed in the scalar field. Shen & Warhaft (2000) find that the velocity field exhibits
Reynolds-number-independent anisotropies for odd-orders greater than or equal to
5. The scalar field (e.g. Mestayer et al. 1976; Sreenivasan & Antonia 1977; Gibson,
Friehe & McConnell 1977; Antonia & Van Atta 1978; Mestayer 1982; Tong &
Warhaft 1994; M&W98; Mydlarski & Warhaft 1998b) is observed to be anisotropic
at the third order – the lowest non-trivial odd order.

The predictions for the behaviour of mixed velocity–passive scalar statistics evolve
from the concept of local isotropy and extensions of KOC theory. In particular,
the works of Lumley (1964, 1967) predict the following inertial-range scaling of the
co-spectrum of velocity (measured in the direction of the mean scalar gradient, v)
and temperature (θ) fluctuations:

Evθ(k1) = Cvθβ〈ε〉1/3k−7/3
1 , (1.1)

where β is the magnitude of the mean scalar gradient, k1 is the longitudinal wave-
number, Cvθ is a constant and the dissipation of turbulent kinetic energy, 〈ε〉, is
defined as

〈ε〉 =
ν

2

〈(
∂ui

∂xj
+
∂uj

∂xi

)(
∂ui

∂xj
+
∂uj

∂xi

)〉
; (1.2)

ν is the kinematic viscosity of the fluid. Since the present flow is of a low turbulent
intensity (i.e. urms/〈U〉 < 11%), Taylor’s hypothesis (Taylor 1938) is a reasonable ap-
proximation (e.g. Lumley 1965) and is applied through the relationship k1 = 2πf/〈U〉,
where f is the frequency.

Decaying grid turbulence with an imposed mean temperature gradient has been a
turbulent flow of fundamental interest since Corrsin’s (1952) prediction that the mean
temperature gradient should maintain itself for the length of a wind tunnel (given
that the integral length scale of the turbulence is sufficiently smaller than the width of
the tunnel). Initially, heated grids were used to generate the mean temperature profile.
However, they were shown to result in poor transverse homogeneity of the temperature
field (Sirivat & Warhaft 1983). Warhaft & Lumley (1978) and Sirivat & Warhaft (1983)
improved upon the homogeneity of the temperature field by introducing two different
temperature ‘injection’ methods: respectively (i) placing an array of fine, heated wires
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across the flow downstream of the grid (called a ‘mandoline’), and (ii) placing heating
elements upstream of the wind tunnel plenum chamber (called a ‘toaster’). The second
method is used herein to generate the temperature field by imposing a linear mean
gradient upon the turbulence. The turbulent velocity field acting against the gradient
will create a turbulent temperature field.

The focus of Warhaft & Lumley (1978) was the decay of (isotropic) temperature
fluctuations in grid turbulence, with emphasis on the effect of the initial conditions
of the injection of the temperature. Sirivat & Warhaft (1983) studied the downstream
evolution of the thermal field in decaying grid turbulence with an imposed mean
temperature gradient (which therefore adds the effect of turbulent production). The
purpose of the present work is to examine the behaviour of mixed velocity–passive
scalar statistics, emphasizing their Reynolds number dependence and their small-scale
behaviour.

The remainder of the paper is organized as follows. The apparatus is described in
§ 2. In § 3, we present results for the mixed velocity–passive scalar field over the range
85 6 Rλ 6 582. The results will be compared to the previous results of M&W96 (for
the velocity field) and M&W98 (for the passive scalar field). The latter comparison will
be of particular interest to determine whether the anisotropies observed in M&W98
are also exhibited in the mixed velocity–passive scalar field. Where appropriate,
comparisons will be made with the direct numerical simulations (DNS) of Overholt
& Pope (1996, hereinafter referred to as O&P), who examined passive scalar mixing
in statistically homogeneous, isotropic, and stationary turbulence with a mean scalar
gradient.

2. Apparatus
The mixed velocity–passive scalar statistics presented in this paper are obtained

from various experiments performed under the same or similar conditions to those in
M&W98. Therefore, the discussion of the apparatus and flow characteristics presented
here will only summarize the discussion in M&W98.

The experiments were conducted in two low-speed low-background-turbulence
open-circuit wind tunnels in the Sibley School of Mechanical and Aerospace Engin-
eering at Cornell University. One tunnel is horizontal and has dimensions 0.91 m ×
0.91 m× 9.1 m; it is described in detail in Yoon & Warhaft (1990). The other tunnel
is vertical and has dimensions 0.41 m× 0.41 m× 4.5 m long. A detailed description is
presented in Sirivat & Warhaft (1983).

The standard bi-planar grids used to generate turbulence in wind tunnels were
replaced by an active grid, following the design of Makita (1991). Active grids –
composed of round grid bars to which are attached triangular agitator wings – enable
one to achieve higher turbulent Reynolds numbers in a standard laboratory wind
tunnel than by means of ‘passive’ grids. Stepper motors, located outside the grid,
rotate the grid bars. A detailed description of the active grid and its operation is
given in M&W96 and M&W98 and is not repeated here.

In both wind tunnels, the mean temperature gradient was produced by means of
a toaster, first introduced by Sirivat & Warhaft (1983). The toaster, located at the
entrance to the wind tunnel plenum chamber, consists of a set of parallel Nichrome
ribbons that act as heating elements. The ribbons are equally spaced and span the
entire width of the plenum chamber. (Schematics of the two wind tunnels and their
respective differential heaters are given in figure 3 of Sirivat & Warhaft (1983) and
figure 1 of Yoon & Warhaft (1990).) Air entering the plenum chamber is warmed



Mixed velocity–passive scalar statistics in high-Reynolds-number turbulence 177

as it flows over the (differentially heated) ribbons. Passage of the air though the
honeycombs, screens, etc. (located in the plenum) smoothes out the (momentum and
thermal) wakes of the heater ribbons. The air then passes through the contraction
and over the grid (located at the entrance to the test section of the wind tunnel). The
resulting turbulent flow downstream of the grid has an imposed temperature gradient.
Its linearity is ensured by iteratively adjusting the electric current passing through
each element of the toaster. The mean flow is in the x1- (longitudinal) direction
and the mean temperature gradient is in the x2- (transverse) direction. The resulting
temperature fluctuations can be considered passive since the buoyant production of
velocity fluctuations is negligible (see M&W98).

Velocity fluctuations were measured by means of Dantec 55M01 constant-tempera-
ture hot-wire anemometers (operated at an overheat ratio of 1.8) using TSI 1241
X-wire probes. The hot wires were made from 3.05µm diameter tungsten with a
length to diameter ratio of approximately 200. The X-wires were calibrated following
the effective angle method of Browne, Antonia & Chua (1989). Compensation of
the velocity measurements for temperature fluctuations was effected by means of a
modified King’s Law with temperature-dependent coefficients (Lienhard 1988). The
two wires comprising the X-wire were separated by 0.5 mm.

The temperature fluctuations were measured by a cold wire placed 0.5 mm away
from the X-wire. The cold wires were made from Wollaston wire, with a 0.63µm
diameter platinum core, soldered to a TSI 1210 single-wire probe. The ratio of the
etched length of the wire to its diameter varied from 500 to 650 and the spacing
between the prongs was at least three times the etched length. Fast-response DC
temperature bridges (based on the design of Haughdal & Lienhard 1988) were used
to measure the temperature fluctuations. The probe current through the cold-wire
thermometer sensors was approximately 250 µA.

The frequency response of the probes and the cold-wire thermometers is addressed
in M&W98. They also discuss the optimal choice of cold-wire length given the
competing effects of spatial resolution and conduction between the cold wire and its
prongs. The discussion (not repeated here) shows that there are no serious temporal
resolution effects and that the chosen cold-wire length is optimal since we are
interested in both the small- and large-scale statistics of the temperature field.

The output from the hot-wire anemometers and cold-wire thermometers was both
high- and low-pass filtered. The signals were digitized using a 12-bit A/D converter.
Each record consisted of 4 or 8×105 data points. For time-series measurements (used
in the calculations of longitudinal derivatives, spectra, etc.) the data were sampled at
twice the low-pass filter frequency (which was set to a value slightly higher than the
Kolmogorov frequency). Time derivatives were numerically calculated using an O(h4)
centred finite difference formula. The derivative statistics presented in § 3.3 exhibited
no significant variation when the sampling rate was, as a test, halved. Taylor’s
hypothesis (Taylor 1938) is used to convert temporal increments and derivatives into
spatial ones. For PDF measurements, the data were sampled at intervals on the order
of an integral time period.

Table 1 lists the flow parameters. The turbulent quantities presented in this table
have had the effects of the low-wavenumber spikes present in the spectra (an artifact
of the active grid) subtracted (on a mean-square basis). This results in a more
realistic description of the turbulence and the procedure is described in detail in
M&W96, p. 338. These spikes occur at scales much larger than the integral scale
(i.e. they occur at frequencies much smaller than those corresponding to the integral
scale) and do not affect the turbulence (M&W96; M&W98). We emphasize the non-
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Mean speed [m s−1] 3.3 3.3 12.2 3.3 11.4 7.0
x/M 68 62 68 62 68 62
Tunnel V H V H V H
β (= ∂〈T 〉/∂y) [◦C m−1] 4.8 2.5 5.2 2.7 3.6 3.6
ν [m2 s−1] 16× 10−6 15.5× 10−6 16× 10−6 16× 10−6 16× 10−6 16× 10−6

〈u2〉 [(m s−1)2] 0.0156 0.0290 0.311 0.0911 1.04 0.583
〈v2〉 [(m s−1)2] 0.0133 0.0209 0.267 0.0594 0.828 0.424
〈ε〉 (= 15ν

∫ ∞
0
k2

1Eu(k1) dk1) 0.0314 0.0418 2.33 0.0833 6.13 0.940
[m2 s−3]
` (= 0.9〈u2〉3/2/ε) [m] 0.056 0.11 0.067 0.30 0.16 0.43
W/` 7.3 8.3 6.1 3.0 2.6 2.1
Rλ (= 〈u2〉(15/(νε))1/2) 85 140 197 306 407 582
R` (= urms`/ν) 440 1200 2300 5600 9900 20 300
η (= (ν3/ε)1/4) [mm] 0.60 0.55 0.21 0.47 0.16 0.26
〈θ2〉 [(◦C)2] 0.062 0.176 0.055 0.800 0.080 1.07
〈εθ〉 (= 3.4κ〈(∂θ/∂x)2〉) 0.062 0.138 0.200 0.399 0.233 0.870
[◦C2 s−1]
`θ (= θrms/β) [m] 0.052 0.17 0.045 0.33 0.079 0.29
R (= ((〈u2〉+ 2〈v2〉)/ 1.34 1.33 1.32 1.26 1.28 1.24
〈ε〉)/(〈θ2〉/〈εθ〉))
〈vθ〉 [◦C m s−1] −0.0216 −0.0213 −0.0576 −0.0407 −0.100 −0.137
ρvθ −0.75 −0.35 −0.48 −0.19 −0.39 −0.20

Table 1. Flow parameters for some representative cases. M represents the mesh length of the
active grid, 0.114 m (= 4.5 in.) for the horizontal (H) tunnel and 0.0508 m (= 2 in.) for the vertical
(V) one. W is the tunnel width – given in § 2. Turbulent quantities in this table were determined
by subtracting, on a mean-square basis, the effect of the low-wavenumber spikes present in the
spectra (an artifact of the active grid – see text). The factor of 3.4 in the definition of 〈εθ〉 is due
to the anisotropic nature of the scalar derivative in flows with mean scalar gradients. The thermal
diffusivity, κ, was 22.5× 10−6 m2 s−1.

standard definition of 〈εθ〉 (given in table 1) that accounts for the anisotropy of a
passive scalar in a turbulent flow with a mean temperature gradient. This anisotropy,
(〈(∂θ/∂y)2〉/〈(∂θ/∂x)2〉 ' 1.4), is explored in detail in Tong & Warhaft (1994) and
M&W98.

3. Results
Similar to the velocity field in M&W96 and to the passive scalar field in M&W98,

the objective of this work is to study the evolution of mixed (velocity–passive
scalar) statistics in grid-generated turbulence over a wide range of Reynolds num-
bers (85 6 Rλ 6 582). To this end, some large-scale statistics are presented in § 3.1.
The remaining sections of the paper treat inertial- and dissipative-range statistics,
reported in terms of spectra and structure functions (§ 3.2), the small-scale structure
(§ 3.3) and conditional statistics (§ 3.4). Appendix A contains a comparison of the
scaling exponents of 〈(∆u)2(∆θ)4〉 with two models. Some (solely) scalar conditional
expectations are discussed in Appendix B.

3.1. Large-scale mixed velocity–passive scalar statistics

The details of the flow characteristics are given (for the velocity field) in M&W96
and (for the scalar field) in M&W98. The present velocity field is close to Gaussian
(M&W96 – figure 5) while the temperature field is slightly sub-Gaussian with a kurtosis
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Figure 1. A typical joint probability density function of the turbulent transverse velocity
fluctuation, v, and the turbulent temperature fluctuation, θ. Rλ = 582.
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Figure 2. Probability density functions of the turbulent heat flux, vθ:
©, Rλ = 140; +, Rλ = 306; �, Rλ = 582.

of approximately 2.3 (M&W98 – figure 2). Here, we present the (normalized) joint PDF
of v and θ in figure 1. (In the flow under consideration, u and v, as well as u and θ, are
uncorrelated. It is therefore unnecessary to show their respective joint PDFs.) Given
the sub-Gaussian nature of the scalar field, the joint PDFs exhibit slight deviations
from a joint-Gaussian distribution (e.g. the major axes of the ellipses formed by
contour lines are not parallel to the y = −x line, etc.). Such a result was typical for
all Reynolds numbers. The only variation was in the ‘width’ of the ellipses formed
by contour lines of the joint PDFs. This results from differences in the correlation
coefficient ρvθ ≡ 〈vθ〉/(vrmsθrms) (discussed below).

As was shown by Thoroddsen & Van Atta (1992), exponential tails for the PDF
of vθ can be predicted given a joint-Gaussian behaviour of v and θ. Figure 2 shows
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Figure 3. The turbulent Nusselt number as a function of Reynolds number for decaying grid
turbulence with an imposed mean (passive) temperature gradient. Solid line: the best-fit power law
to the data of Jayesh & Warhaft (1992); ©, present work; •, present work assuming ρvθ = −0.7;
dashed line; the best-fit (R1.1

λ ) power law to the present data.

the (normalized) PDFs of the turbulent heat flux, vθ, for three Reynolds numbers
(Rλ = 140, 306 and 582). These PDFs collapse relatively well, though the positive tail
for the lowest Reynolds number falls off at a slightly higher rate than for the other
two Reynolds numbers. The tails of the PDF are approximately exponential (with
the negative one less steeply sloped than the positive one because of the nature of the
flow – vθ is more likely to be negative than positive). Such a result is expected, given
the quasi-joint-Gaussian nature of the flow.

We plot in figure 3 the turbulent Nusselt number (Nu ≡ −〈vθ〉/(κβ)) as a function
of Rλ. On the same figure is plotted the best fit line to the results of Jayesh &
Warhaft (1992). Before proceeding, we make two comments. First, the data of Jayesh
& Warhaft (1992) has been transformed from R` to Rλ by the relation R` = 0.9

15
R2
λ

(Tennekes & Lumley 1972; M&W96). Secondly, Jayesh & Warhaft (1992) determined
〈vθ〉 by assuming that urms ∼ vrms and that ρvθ = −0.7. We observe that the lowest
Reynolds number data of the present work are in agreement with the data of Jayesh
& Warhaft (1992). However, the present data exhibit an R1.1

λ power law behaviour
while the data of Jayesh & Warhaft (1992) display an R1.76

λ dependence. It is unlikely
that a transition is occurring at Rλ ∼ 100. The more likely explanation is that the
lower slope arises from a dependence of ρvθ on the Reynolds number and/or the
ratio of the tunnel width (W ) to the integral length scale (`) of the flow (see table 1).

Also shown in figure 3 is the Nusselt number calculated fromNu=−ρvθvrmsθrms/(κβ)
assuming ρvθ = −0.7. This exhibits an R1.7

λ power law dependence and follows the
trend of the data of Jayesh & Warhaft (1992). The difference between the two Nu
curves lies in the changes in ρvθ . It is still unclear whether this is an artifact of the
lower W/` ratios in this flow or whether this is related to the increasing Reynolds
number (or both). High-Reynolds-number experiments with large W/` would serve
to clarify this relationship. Such experiments are, unfortunately, not practical since
R` ∝ `. We also point out that O&P observe a decay in ρvθ from −0.603 at Rλ = 28
to −0.464 at Rλ = 185. However, their numerical simulations also suffer from a low
ratio of the computational domain width to the integral length scale.
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Figure 4. Spectra at Rλ = 582. The power spectrum of longitudinal velocity fluctuations, Eu(k1)
(short-dashed line), the power spectrum of transverse velocity fluctuations, Ev(k1) (long-dashed line),
the power spectrum of temperature fluctuations, Eθ(k1) (dot-dashed line) and the co-spectrum of
the transverse velocity and temperature fluctuations, Evθ(k1) (solid line).

Next, we consider the ratio of the mechanical to thermal time scale,

R ≡ (〈uiui〉/〈ε〉)/(〈θ2〉/〈εθ〉) = ((〈u2〉+ 2〈v2〉)/〈ε〉)/(〈θ2〉/〈εθ〉),
where the last equation assumes an axisymmetric flow. The time scale ratio is found
to be 1.28 ± 0.07 and roughly independent of Rλ. This value compares well with
the equilibrium value of 1.4–1.6 (for temperature fluctuations generated by means of
a mandoline or a toaster) obtained in Sirivat & Warhaft (1983) for grid-generated
turbulence with a mean scalar gradient. The Reynolds number independence of R
(for Rλ greater than approximately 102) is consistent with the results of Pullin (2000)
and Xu, Antonia & Rajagopalan (2000b). Using large-eddy simulation with stretched-
vortex subgrid stress models, Pullin (2000) obtains a mechanical to thermal time-scale
ratio that asymptotes to R ≈ 2.8 for Rλ > 180. (The asymptotic value of R is flow
dependent. It is the Reynolds number dependence of R with which we are concerned
here.) Xu et al. (2000b) develop an expression for R (based on structure function
parameterization) and, comparing their results with various sets of data, come to the
conclusion that R should tend to a constant value in the limit of large Reynolds
numbers. From their work, Rλ ∼ 100 appears to be large enough for R to tend to
a constant value. We remark that the time scale ratio used in Xu et al. (2000b) is
defined slightly differently.

Lastly, we mention that there exists a relationship between R and the rates of
change of turbulent kinetic energy (〈uiui〉) and scalar variance (〈θ2〉) in the downstream
direction. For grid turbulence with imposed isotropic temperature fluctuations, the
relationship has been presented in Zhou et al. (2000). In such a flow, the kinetic
energy decays. However, when a mean scalar gradient is present, the scalar variance
can increase with x1/M, unlike in Warhaft & Lumley (1978) or Zhou et al. (2000).
The downstream evolutions of 〈uiui〉 and 〈θ2〉 for experiments similar to the present
ones are discussed in M&W96, M&W98 and in section II of Danaila & Mydlarski
(2001). They are not the focus of the present work and, as such, their relationship to
R is not determined herein.
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slope (nθ); ×, the slope of the co-spectrum of transverse velocity and temperature (nvθ).

3.2. The spectra and structure functions

Figure 4 shows four (one-dimensional) spectra at Rλ = 582: the power spectrum of
longitudinal velocity fluctuations, Eu(k1); the power spectrum of transverse velocity
fluctuations, Ev(k1); the power spectrum of temperature fluctuations, Eθ(k1); and the
co-spectrum of the transverse velocity and temperature fluctuations, Evθ(k1). For the
range of scales 1× 10−4 < κ1η < 6× 10−4, a slight bump is present in the power
spectrum of temperature and the co-spectrum of transverse velocity and temperature.
These are an artifact of the active grid and do not significantly affect the flow since
they occur at scales larger than the integral scale (as discussed in § 3 of M&W98).
The co-spectrum is noisier than the three power spectra since it has no mathematical
limitation preventing it from taking on negative values. To plot the co-spectrum in
log-log coordinates, the occasional negative excursion has been removed.

At this relatively large Reynolds number, all four spectra show broad scaling ranges
in the inertial subrange. Kolmogorov (1941a, b) predicted that, in the limit of infinite
Reynolds number, the slope of Eu(k1) and Ev(k1) should be equal to −5/3 in the
inertial range. Following the notions of Kolmogorov, Obukhov (1949) and Corrsin
(1951) came to the same conclusion for the temperature spectrum. Lumley (1964,
1967) postulated that the co-spectrum of velocity and temperature should have a
slope equal to −7/3 in the inertial subrange. Figure 5 shows the Reynolds number
dependence of the inertial-range slopes for the power spectra of longitudinal velocity
(nu), transverse velocity (nv), temperature (nθ) and for the co-spectra of transverse
velocity and temperature (nvθ), as measured in M&W96 and M&W98. The slopes
are non-dimensionalized by their high-Reynolds-number prediction (i.e. −5/3 for
nu, nv and nθ; −7/3 for nvθ). In figure 5, one observes the already-mentioned different
scaling-exponent evolution of nu and nv compared to that of nθ , (i.e. nv tends to a
value of −5/3 more slowly than that nu, which does so more slowly than nθ). The
scaling-range exponent of the co-spectra (nvθ) more closely resembles that of the
velocity field than the scalar field, given its slow evolution and that, even at the
highest Reynolds numbers, it is significantly different from Lumley’s (1964, 1967)
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−7/3 prediction. The retarded evolution of nvθ seems to indicate that the co-spectrum
is dominated by its contribution from the velocity field.

We also point out that even though the evolution of nvθ is slow, the (dimensional)
value of nvθ is nevertheless greater than both nv and nθ for all Reynolds, indicating a
tendency towards local isotropy (at least with respect to second-order quantities like
the spectra).

Tavoularis & Corrsin (1981) measured the co-spectrum of the transverse velocity
and temperature fluctuations in homogeneous shear flow with an imposed mean
temperature gradient (in the same direction as the shear). At Rλ = 266, they observed
a scaling range with a slope approximately equal to −1.5 (i.e. nvθ/(−7/3) ≈ 0.64). This
is slightly lower than observed herein. However, given that the spectrum of the scalar
evolves very differently in shear flows†, such a result could be expected presuming a
correlation between the evolution of the individual velocity and scalar fields and that
of the combined fields. Co-spectra of transverse velocity and temperature were also
presented in Yoon & Warhaft (1990) and Lienhard & Van Atta (1990). The Reynolds
number of these flows was, however, too low for the co-spectrum to exhibit a scaling
range with a distinct slope.

P. A. O’Gorman and D. I. Pullin (private communication), using the stretched-
spiral vortex model, have calculated the velocity–scalar co-spectrum for homogeneous
isotropic turbulence in the presence of a mean scalar gradient. They obtained an
asymptotic expression for the co-spectrum of the scalar and axial velocity component
(of the stretched-spiral vortex) with a leading-order term proportional to k−5/3. The
next-order term exhibited a k−7/3 dependence. These results are not inconsistent with
the scaling-range slope of −2.0 (i.e. nvθ/(−7/3) ≈ 0.86) observed in the present work
at high Reynolds number.

The imaginary component of the cross-spectral density function, the quadrature
spectrum (Qvθ(k1)), is also calculated and found to be effectively zero (until noise
effects become significant at small scales, i.e. k1η & 0.1). Consequently, the resulting
phase angle between v and θ, Phvθ(k1) ≡ tan−1(Qvθ(k1)/Evθ(k1)), is roughly 180◦ over
all wavenumbers until the signal-to-noise ratio falls and noise begins to dominate.

Figure 6 shows 〈∆v(r)∆θ(r)〉 (where ∆v ≡ v(x+ r)− v(x) and ∆θ ≡ θ(x+ r)− θ(x))
plotted as a function of separation for various Reynolds numbers. Figure 6(a) plots
the non-dimensional structure functions in an uncompensated form while figure 6(b)
presents them in compensated form. We choose to call measurements of 〈∆v(r)∆θ(r)〉
‘heat flux structure functions’ since they are related to the turbulent transport of
temperature by eddies of size r. In the limit of large separations (i.e. as r →∞),
they are equal to twice the turbulent heat flux, 2〈vθ〉 = 2〈u2θ〉. In the limit of small
separations (i.e. as r → 0), they display an r2 behaviour, as expected.

The heat flux structure function is the real-space analogue of the (one-dimensional)
co-spectrum of velocity and temperature, Evθ(k1). Lumley’s (1964, 1967) −7/3 predic-
tion translates to a 4/3 (= −1× (−7/3 + 1)) inertial-range slope of 〈∆v(r)∆θ(r)〉. The
observed heat flux structure function scaling exponents (determined by compensation
of the structure functions) are 0.75 at Rλ = 85, 0.80 at Rλ = 197 and 1.02 at Rλ = 407.
These values are in reasonable agreement with the values of nvθ from figure 5 and may
be slowly approaching their theoretical prediction of 4/3 as the Reynolds number

† It has been observed (e.g. Sreenivasan 1991) that in shear flows, the scaling exponent of the
power law region of the scalar power spectrum evolves slowly with Reynolds number and only
approaches the Kolmorogov prediction of −5/3 at very high Reynolds numbers (i.e. Rλ > 103). This
is in sharp contrast to the power spectrum of the scalar in isotropic flows which exhibits a −5/3
scaling region at low Reynolds numbers (i.e. Rλ < 50 (Jayesh, Tong & Warhaft 1994)).
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Figure 6. The ‘heat flux structure functions’, 〈∆v(r)∆θ(r)〉 in (a) uncompensated and
(b) compensated form. ©, Rλ = 85, n = 0.75; +, Rλ = 197, n = 0.80; ×, Rλ = 407, n = 1.02.

is increased. We remark that the non-dimensionalization employed in figure 6(a) –
a non-dimensionalization that, other than the linear dependence on β, is in terms
of small-scale variables – collapses the data only up to separations of r/η ∼ 15. No
collapse of the data in the inertial-range occurs, because the inertial-range scaling
exponent has yet to asymptote to a constant value.

Two additional comments should be made. First, we only present results for the
heat flux structure functions in the y-direction since this is the only direction in
which a mean scalar gradient is present. Secondly, we have measured the longitudinal
structure function of the transverse turbulent heat flux, 〈∆v(x)∆θ(x)〉. The transverse
structure functions of the transverse turbulent heat flux (〈∆v(y)∆θ(y)〉) are slightly
different, as can be seen in figure 1 of Danaila & Mydlarski (2001), who present
DNS results provided by A. Pumir. We are unable to measure 〈∆v(y)∆θ(y)〉 with the
present apparatus.

At the next order, we discuss the third-order longitudinal mixed structure function,
〈∆u(r)(∆θ(r))2〉, where ∆u ≡ u(x + r) − u(x) and ∆θ ≡ θ(x + r) − θ(x). For homo-
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geneous isotropic quasi-stationary turbulence in the limit of infinite Reynolds number,
Yaglom (1949) derived (from the advection–diffusion equation for a passive scalar)
an expression for 〈∆u(∆θ)2〉:

〈∆u(r)(∆θ(r))2〉 = 2κ
d

dr
〈(∆θ(r))2〉 − 4

3
〈εθ〉r. (3.1)

For inertial-range separations, this expression reduces to what is now known as
‘Yaglom’s four-thirds law’:

〈∆u(r)(∆θ(r))2〉 = − 4
3
〈εθ〉r. (3.2)

M&W98 plotted (non-dimensionalized) 〈∆u(∆θ)2〉 as a function of separation for
various Reynolds numbers. (A similar plot is not reproduced here.) They observed
that 〈∆u(∆θ)2〉 only tends to the prediction of Yaglom (i.e. −4/3) for large Reynolds
numbers. It has recently been shown by Danaila et al. (1999) (for an isotropic flow
with isotropic temperature fluctuations) that the non-stationarity of a flow (such as
the decay of grid turbulence) causes a deviation of 〈∆u(∆θ)2〉 from − 4

3
〈εθ〉r in the

inertial range at low Reynolds numbers. This effect was accounted for by deriving a
generalized form of Yaglom’s equation in which the non-stationary term was retained.
In a similar manner, the (additional) effect of production of scalar fluctuations by a
mean gradient (as is the case here) was also shown to affect the value of 〈∆u(∆θ)2〉 in
the inertial-range at low Reynolds numbers (see Danaila & Mydlarski 2001). These
effects occur at the largest scales for any Reynolds number. At low Reynolds numbers
(i.e. when the separation of scales is small), the non-stationarity and production
therefore also ‘contaminate’ the smaller (i.e. inertial and dissipative) scales. It is these
phenomena which cause the deviations from 4/3 in figure 19 of M&W98.

Finally in this section, in figure 7(a), we plot the sixth-order longitudinal mixed
structure function, 〈(∆u(r))2(∆θ(r))4〉, for various Reynolds numbers. It is of particular
physical interest since ((∆u)2(∆θ)4) can be viewed as the square of the transport of
scalar variance by an eddy of size r. The deviation of its scaling exponent from the
KOC prediction of 2 can be used to estimated the scalar intermittency exponent, µθ ,
which is determined from the autocorrelation of the scalar dissipation:

ρεθεθ (r) =
〈εθ(x)εθ(x+ r)〉

〈ε2
θ〉

∝ r−µθ , (3.3)

where r is an inertial–convective subrange distance. (This is described, for example, in
Antonia et al. 1984.) In figure 7(b), the higher Reynolds number structure functions
are plotted in compensated form.

There appear to be only five sets of measurements of 〈(∆u)2(∆θ)4〉 by three different
research groups (namely Chambers & Antonia 1984; Zhu, Antonia & Hosokawa 1995;
Schmitt et al. 1996; Lévêque et al. 1999; Xu, Antonia & Rajagopalan 2000). The data
of Xu et al. (2000) are included in figure 7. All five sets of measurements are made in
flows with mean temperature gradients. The sixth-order mixed structure function was
also estimated in the DNS of Boratav & Pelz (1998), where no large-scale anisotropy
was present.

As with the measurements of 〈∆u(∆θ)2〉 in M&W98, there is a noticeable variation
in the inertial-range behaviour of 〈(∆u)2(∆θ)4〉 with Reynolds number. The inertial-
range exponents (estimated by direct compensation of the structure functions) were
1.46 at Rλ = 306, 1.36 at Rλ = 407 and 1.52 at Rλ = 582. No significant scaling range
in 〈(∆u)2(∆θ)4〉 was present at the lower Reynolds numbers and therefore no scaling
exponent could be estimated. (At the sixth order, the scaling-range exponents can only
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be estimated with an accuracy of ±0.05.) The inertial-range scaling exponents, esti-
mated by extended self-similarity (ESS – Benzi et al. 1993) conditioned on 〈|∆u(∆θ)2|〉,
were 1.55 at Rλ = 85, 1.55 at Rλ = 306, 1.67 at Rλ = 407 and 1.58 at Rλ = 582. The
values determined by ESS are higher than those determined directly since 〈|∆u(∆θ)2|〉
does not scale as r1.0 in the inertial range (not shown). Rather 〈|∆u(∆θ)2|〉 scales as
0.90± 0.05 in the inertial range for the Reynolds numbers under consideration.

Chambers & Antonia (1984) (along with Zhu et al. (1995), who use data from the
same set of experiments) obtain a scaling exponent of 1.75 ± 0.05 for 〈(∆u)2(∆θ)4〉
(estimated by structure function compensation) in atmospheric surface layer measure-
ments at Rλ = 4298–7830. Schmitt et al. (1996) obtain a scaling exponent of 1.65±0.05
(by least-squares regression in the inertial range) in atmospheric surface layer
measurements at an unspecified, but presumably high, Rλ – the dissipative scales were
not resolved by the sonic anemometer. Lévêque et al. (1999) obtain a scaling exponent
of 1.608± 0.028 (estimated by ESS conditioned on 〈|∆u(∆θ)2|〉) in the heated wake of
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a cylinder at Rλ ≈ 300. Xu et al. (2000a) obtain a scaling exponent of 1.83 (estimated
by least-squares regression) in a turbulent round jet at Rλ = 550. In their (isotropic)
simulations at Rλ = 99 and 141, Boratav & Pelz (1998) estimate the inertial-range
scaling exponent of 〈(∆u)2(∆θ)4〉, by means of ESS conditioned on 〈|∆u(∆θ)2|〉, to be
1.61± 0.04.

The scaling exponents in the present work (particularly when determined by ESS)
are in better agreement with the experiments of Lévêque et al. (1999) and Schmitt
et al. (1996) than with Chambers & Antonia (1984), Zhu et al. (1995) and Xu et al.
(2000a). It is unclear to what the difference can be attributed. Some of the disparity
may arise from the use of different methods to determine the scaling exponents.
Direct measurement of the scaling exponents is preferable. However, such a method
is limited to high Reynolds numbers, where a large enough scaling range must be
present to make a reasonable estimate of its power-law slope. On the other hand, ESS
cannot be used without caution at low Reynolds numbers because the third-order
structure function only scales as r1.0 for large Reynolds numbers (M&W96; M&W98).
Additionally, all the previous measurements of 〈(∆u)2(∆θ)4〉 were made in shear flows.
Like the scalar power spectrum, there may be a significant difference in the behaviour
of 〈(∆u)2(∆θ)4〉 in shear and shear-free flows. The present experiments appear to
produce scaling exponents that are lower than those observed in shear flows.

The scaling exponents measured herein are compared with the log-normal model
(Xu et al. 2000a) and the hierarchical structure model of Lévêque et al. (1999) in
Appendix A.

3.3. The fine-scale structure

We now proceed to study the Reynolds number dependence of the small-scale struc-
ture of the flow. Another aim of this subsection, though not unrelated, is to determine
whether the mixed velocity–temperature field displays any small-scale anisotropies.
In this flow, the scalar field is anisotropic and the velocity field is isotropic. It will
be therefore of interest to compare, from an isotropy point of view, the mixed
velocity–passive scalar field with the (individual) velocity and passive scalar fields.

We begin by plotting the correlation coefficient between longitudinal derivatives of
transverse velocity and temperature:

ρ∂v/∂x,∂θ/∂x ≡ 〈(∂v/∂x− 〈∂v/∂x〉)(∂θ/∂x− 〈∂θ/∂x〉)〉
(∂v/∂x)rms(∂θ/∂x)rms

, (3.4)

as a function of Reynolds number, Rλ, in figure 8. As for the heat flux structure
functions, we only plot the correlation with the velocity component in the direction
of the mean gradient. (In fact, the above correlation coefficient is equal to the non-
dimensional heat flux structure function in the limit of small separations.) In a locally
isotropic flow, equation (3.4) must tend to zero in the limit of infinite Reynolds
number. This appears to be the case, as can be seen in figure 8. Included in this
figure are results from the DNS of O&P. Their data span the range 28 6 Rλ 6 185.
The present results extend from Rλ = 85 to Rλ = 582. For the range of Reynolds
numbers where both sets of results overlap, the agreement is reasonable. Overall, the
correlation coefficient appears to decrease with Rλ following a power law of slope
approximately equal to −0.7 to −0.9, depending on whether the two outlying data
points are included in the least-squares fit.

It would be of interest to determine the correlation coefficients of mixed derivative
statistics containing transverse derivatives of temperature (e.g. ρ∂v/∂x,∂θ/∂y, ρ∂v/∂y,∂θ/∂y ,
etc.). Statistics of this nature are more likely to detect the anisotropy of the scalar field,
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given that the mean scalar gradient is imposed in the y-direction. Such measurements
were beyond the scope of these experiments. However, some of these measurements
have been made in the direct numerical simulations of O&P. They show that ρ∂v/∂y, ∂θ/∂y
varies from −0.295 to −0.085 as the Reynolds number (Rλ) increases from 28 to 185.
Over this same range, ρ∂u/∂x, ∂θ/∂y falls from 0.144 to 0.043. Since both correlation
coefficients are tending towards zero – their locally isotropic values – it would appear
that such statistics are not inheriting the anisotropy of the scalar field.

The correlation between ∂v/∂x and ∂θ/∂x (or more generally between ∂ui/∂xk
and ∂θ/∂xk) is of particular physical interest since it is a component of the term
representing the dissipation of turbulent heat flux 〈εuiθ〉 in the heat flux budget (e.g.
Townsend 1976):

∂t〈θui〉+ 〈Uk〉∂xk〈θui〉+ ∂xk〈θuiuk〉 = −〈uiuk〉∂xk〈T 〉 − 〈θuk〉∂xk〈Ui〉
−1

ρ
〈θ∂xip〉+

gi

〈T 〉〈θ
2〉+ ∂xk (κ〈ui∂xkθ〉+ ν〈θ∂xkui〉)− (ν + κ)〈∂xkui∂xkθ〉. (3.5)

For a steady, quasi-homogeneous flow (i.e. neglecting all inhomogeneitites except
for the decay of the turbulence) with no mean velocity gradients, one can write a
simplified form of the above equation for the heat flux in the direction of the mean
gradient (i.e. the y-direction):

〈U〉∂x〈θv〉 = −〈v2〉β − 1

ρ
〈θ∂yp〉+

g

〈T 〉〈θ
2〉 − (ν + κ)〈∂xkv∂xkθ〉. (3.6)

The correlation coefficient defined in equation (3.4) is related to one of the three
components of the dissipation of turbulent heat flux 〈εvθ〉 (the last term in equation
(3.6)). By local isotropy arguments, is often assumed that 〈εvθ〉 is zero in flows with
large enough Reynolds numbers. (The production of heat flux is then balanced by
the pressure-scrambling term.) To test the validity of this assumption, we follow O&P
by plotting in figure 9 the ratio of (one-component of) the dissipation of (transverse)
turbulent heat flux to its production, −〈v2〉β. It is emphasized that the numerator only
represents one of the three components of the total dissipation of transverse turbulent
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Figure 9. The ratio of the dissipation of turbulent heat flux, 〈εvθ〉, to its production: •,
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(−〈v2〉β) – DNS of O&P.

heat flux. Also plotted in figure 9 is the ratio of the total dissipation of transverse
turbulent heat flux to its production, as determined by O&P. Both sets of data tend
to zero as the Reynolds number is increased. As would be expected, the two sets of
data have different values, with the data of O&P (for the complete dissipation, 〈εvθ〉)
being larger by a factor of approximately 3 to 4. However, the Reynolds number
dependence for both sets of data is similar and the present data roughly follow an
R−1.2
λ power law. (The data of O&P follow an R−0.77

λ power law.)
We next discuss third-order mixed derivative statistics. In particular, we consider

non-dimensional, skewness-like statistics, Sα(m, n), where

Sα(m, n) =
〈(∂xuα)m(∂xθ)n〉
(∂xuα)mrms(∂xθ)nrms

. (3.7)

(For these to be considered ‘skewnesses’, m + n must equal 3.) In figure 10, S1(1, 2),
S1(2, 1), S2(1, 2) and S2(2, 1) are plotted as a function of Reynolds number. In an
isotropic flow, S1(2, 1), S2(1, 2) and S2(2, 1) must be zero. This is indeed the case
to within the experimental scatter. The term 〈(∂xu)(∂xθ)2〉 (i.e. the numerator of
S1(1, 2)) represents the production of 〈(∂xθ)2〉 by stretching of the temperature field
resulting from the action of the turbulent strain field (Wyngaard 1971). Over the
range of Reynolds numbers considered in this paper, S1(1, 2) ≈ −0.4 ± 0.1. Such a
result is consistent with previous measurements (see Sreenivasan & Antonia (1997)
for a compilation of laboratory and atmospheric data) and numerical simulations
(e.g. Wang, Chen & Brasseur 1999). Antonia & Chambers (1980), using arguments
put forth by Van Atta (1974), predict that the Reynolds number dependence of
S1(1, 2) should be weak (i.e. R0.0375

λ or R0.15
λ , depending on the estimates of the

scalar intermittency exponent, µθ , and the correlation coefficient between ln(ε) and
ln(εθ)). Though the compilation of Sreenivasan & Antonia (1997) displays an R∼0.15

λ

dependence of S1(1, 2), in this work such a weak Reynolds number dependence is
indiscernible from the experimental scatter over our smaller Reynolds number range
that does not include atmospheric flows.
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At the fourth order, we can consider kurtosis-like statistics. We define Kα as

Kα =
〈(∂xuα)2(∂xθ)2〉

(∂xuα)2
rms(∂xθ)2

rms

. (3.8)

K1 and K2 are both 2.0± 0.5 and show no discernible Reynolds number dependence.
They are not measures of the internal intermittency of the scalar field. Rather, these
are measures of the correlation between the dissipation of turbulent kinetic energy, ε,
and the dissipation of the scalar variance, εθ . It can be shown that

K = 1 + ρε,εθ
εrms

〈ε〉
εθrms

〈εθ〉 , (3.9)

where the formal correlation coefficient between ε and εθ , ρε,εθ , is given by

ρε,εθ ≡ 〈(ε− 〈ε〉)(εθ − 〈εθ〉)〉εrmsεθrms
. (3.10)

Therefore, the O(1) value of K1 and K2 implies a low correlation between ε and
εθ , given that the ‘dissipation intensities’, εrms/〈ε〉 and εθrms/〈εθ〉, are approximately 3
and 4.5, respectively.† This is explicitly observed in figure 11, where the correlation
coefficient between ε and εθ is plotted and found to be O(0.1) and decreasing with
Reynolds number. Included in figure 11 are the data of O&P who calculate ρε,εθ using
the total definitions of ε (or the pseudo-dissipation, εp ≡ ν(∂ui/∂xj)(∂ui/∂xj)) and εθ .
It is emphasized that, for the present data, the dissipations are estimated by their one-
dimensional surrogates: ε = ε11 = 15ν〈U〉−2(∂u/∂t)2 or ε = ε21 = 7.5ν〈U〉−2(∂v/∂t)2

and εθ = εθ1 = 3.4κ〈U〉−2(∂θ/∂t)2. The data for ρεp,εθ from O&P are in slightly better
agreement with the present (surrogate-based) data than their data for ρε,εθ . This is to
be expected since εp more closely resembles the surrogates used herein – neither include
the cross-terms, (∂ui/∂xj)(∂uj/∂xi), present in the total definition of the dissipation of
turbulent kinetic energy.

† More precisely, as Rλ increases from 85 to 582, ε11
rms/〈ε11〉 increases from 2.3 to 2.9, ε21

rms/〈ε21〉
increases from 2.7 to 3.4 while εθ1

rms/〈εθ1〉 falls between 3.9 and 5.1. Both ε11
rms/〈ε11〉 and ε21

rms/〈ε21〉
show clear R∼0.1

λ Reynolds number dependences while no such a dependence can be distinguished
from the scatter in εθ1

rms/〈εθ1〉.
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Figure 11. The correlation coefficient between ε and εθ as a function of Reynolds number. Solid
symbols represent the present work. Open symbols represent the DNS of O&P. •, ρε11 ,εθ1 ; �, ρε21 ,εθ1 ;
©, ρε,εθ = ρ13 of O&P; �, ρεp,εθ = ρ14 of O&P.

To determine the effect of internal intermittency on the mixed velocity–passive
scalar field, we calculate PDFs of ∆v(r)∆θ(r) for various separations, r, that extend
from r/η ∼ 2.5 to r/` ∼ 0.5. These are shown for two Reynolds numbers (Rλ = 85
and 407) in figures 12(a) and 12(b), respectively. In the limit r → 0, these become the
PDFs of (∂v/∂x)(∂θ/∂x). In the limit r →∞, the PDFs tend towards the PDFs of the
turbulent heat flux, vθ. As the separation, r, is reduced, the tails of the PDF broaden,
reflecting the increased probability of rare events many standard deviations away from
the mean. The tails of the PDFs also change from being approximately exponential
at large separations (i.e. figure 2) to being super-exponential at the smallest scales.

We also observe that the (negative) skewness of the PDF of ∆v∆θ for the smallest
separations decreases with Reynolds number. At large scales, the imposed gradient
induces a skewness in the PDF of ∆v∆θ, independent of Reynolds number. However,
for large separation of scales (i.e. large Reynolds numbers), the anisotropy generated
by the mean temperature gradient is not communicated to the smallest scales.

The kurtosis of (∂v/∂x)(∂θ/∂x) is 225± 75. There is significant scatter since this is
an eighth-order derivative statistic.

3.4. The conditional statistics

Conditional statistics of mixed velocity–passive scalar statistics are of particular
interest to turbulence theoreticians and modellers, particularly due to their appearance
in the governing equation for the PDF of a passive scalar. The evolution equation for
the one-point, one-time Eulerian PDF of the scalar fluctuation, fθ(ψ; xi, t), is (Pope
2000)

∂fθ

∂t
+

∂

∂xi
[ fθ(〈Ui〉+ 〈ui|ψ〉)] = − ∂

∂ψ

(
fθ

〈
Dθ

Dt

∣∣∣∣ψ〉)
= − ∂

∂ψ
(fθ[〈κ∇2θ|ψ〉+ 〈S(θ)|ψ〉]), (3.11)

where ψ is the sample-space variable representing θ. We remark that 〈ui|ψ〉 denotes
〈ui(xi, t)|θ(xi, t) = ψ〉. (Similar notation is used for the other conditional expectations.)



192 L. Mydlarski

–60
DvDθ/(DvDθ)rms

P
D

F
[D

vD
θ

/(
D

vD
θ

) r
m

s]

0 60

10–3

–40 –20 20 40
10–13

10–7

10–1

10–5

10–9

10–11

(b)

(a)

P
D

F
[D

vD
θ

/(
D

vD
θ

) r
m

s]

10–3

10–7

10–1

10–5

10–9

10–11

Figure 12. Probability density functions of ∆v(r)∆θ(r) for various separations, r, extending from
r/η ∼ 2.5 to r/` ∼ 0.5. (a) Rλ = 85: ©, r/η = 2.3; �, r/η = 4.6; �, r/η = 11.6; ×, r/η = 25.5;
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S(θ) is the source term, which, in the present flow, is equal to −ui∂〈T 〉/∂xi = −vβ (i.e.
production of scalar fluctuations by the mean scalar gradient). The above equation
can also be re-written in the following manner (Pope 2000):

Dfθ

Dt
= κ∇2fθ− ∂

∂xi
(fθ〈ui|ψ〉)− ∂2

∂ψ2

(
fθ

〈
κ
∂θ

∂xi

∂θ

∂xi

∣∣∣∣ψ〉)− ∂

∂ψ
[ fθ〈S(θ)|ψ〉]. (3.12)

In these equations, the effects of the turbulent convective flux and molecular
diffusion are not in closed form and therefore require modelling.

More generally, the evolution equation for the one-point, one-time joint Eulerian
PDF of the velocity and the scalar, fuiθ(Vi, ψ; xi, t), is also of interest. Its governing
equation, deduced from the Navier–Stokes and the advection–diffusion equations, is
(Pope 2000)

∂fuiθ

∂t
+ Vi

∂fuiθ

∂xi
− 1

ρ

∂〈p〉
∂xi

∂fuiθ

∂Vi
+

∂

∂ψ
[ fuiθ〈S(θ)|ψ〉]

= − ∂

∂Vi

(
fuiθ

〈
ν∇2Ui − 1

ρ

∂p′

∂xi

∣∣∣∣Vi, ψ〉)− ∂

∂ψ
[ fuiθ〈κ∇2θ|Vi, ψ〉], (3.13)
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Figure 13. A typical expectation of the transverse velocity fluctuation conditioned on the
scalar fluctuation. Rλ = 582.

where Vi is the sample-space variable representing the instantaneous velocity, Ui.
From the above equation, it can be seen that the joint conditional Laplacian of the
scalar (〈∇2θ|Vi, ψ〉) must be modelled. However, because fuiθ contains information on
the velocity field, turbulent convection appears in closed form and does not require
modelling.

In this section, we will therefore examine 〈ui|ψ〉, 〈∇2θ|Vi〉 and 〈∇2θ|Vi, ψ〉. (The other
mixed velocity–passive scalar conditional expectation in equation (3.13), 〈∇2Ui|ψ〉,
should be zero since the velocity is independent of the scalar due to the latter’s
passive nature. This was indeed verified, but is not shown here.)

The conditional expectations 〈∇2θ|ψ〉 and 〈εθ|ψ〉 (i.e. the conditional Laplacian of
the scalar and the conditional scalar dissipation) describe the effects of molecular
diffusion. These are not mixed velocity–passive scalar statistics per se, but are of
interest and are therefore discussed in Appendix B.

A typical plot of the expectation of the transverse velocity fluctuation (i.e. the
fluctuation in the direction of the mean scalar gradient) conditioned on the scalar
fluctuation, 〈v|ψ〉, is shown in figure 13 at Rλ = 582. The conditional expectation is
approximately linear with negative slope. Similar results were also obtained by O&P
and Venkataramani & Chevray (1978). Given a linear conditional expectation, it can
be proven that the slope of the curve must be equal to the correlation coefficient
between the two variables. (Furthermore, a linear conditional expectation is obtained
when two variables are jointly Gaussian. This is not exactly the case here, but is a
reasonable approximation at large scales.) The expectations of the transverse velocity
conditioned on the scalar value were approximately linear for all Reynolds numbers
and exhibited no significant Reynolds number dependence. The only variation was
in their slope, which results from the previously discussed changes in the correlation
between v and θ.

In contrast to the previous figure, a significant Reynolds number dependence is
observed in figure 14, where the conditional expectation 〈∂2θ/∂x2|V 〉 is shown (with
V = V2); 〈∂2θ/∂x2|V 〉 is a surrogate for the total Laplacian of the scalar, 〈∇2θ|V 〉,
which has three components. As shown in Pope (1998), Taylor’s (1921) hypothesis of
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diffusivity independence implies

lim
Re,Pe→∞

{
θrms〈∇2θ|Vi〉
〈∇θ · ∇θ〉

}
= lim

Re,Pe→∞

{
κθrms〈∇2θ|Vi〉
〈εθ〉

}
= 0. (3.14)

Local isotropy does not imply that 〈∇2θ|Vi〉 is zero. However, local isotropy in
conjunction with 〈∇2θ|Vi〉 being an odd function of ui implies that 〈∇2θ|Vi〉 must
be zero (Pope 1998). As can be seen in figure 14, (the surrogate of) 〈∇2θ|V 〉 is
approximately linear in v and passes through the origin. It should therefore tend to
zero in a locally isotropic flow. This is observed to be the case. At Rλ = 85, the slope
of (the central, better-converged portion of) this curve is 0.17, consistent with the
results of O&P. At Rλ = 197, the slope of the curve is 0.13 and at Rλ = 582, the slope
is 0.03 – effectively zero. The scalar mixing term is not independent of the velocity for
lower Reynolds numbers. This anisotropy must therefore be included in models of
this conditional expectation. Consequently, a velocity-conditioned model of 〈∇2θ|Vi〉
and 〈∇2θ|Vi, ψ〉 has been put forth by Fox (1996).

We make two last points regarding 〈∂2θ/∂x2|V 〉. First, a surrogate of ∇2θ was
used. It would be of particular interest to consider the other two terms (∂2θ/∂y2

and ∂2θ/∂z2) in ∇2θ. The behaviour of 〈∂2θ/∂y2|V 〉 would be of particular interest
given that the derivative is in the direction of the mean scalar gradient. Secondly,
〈∂2θ/∂x2|V 〉 was non-dimensionalized by 〈(∂θ/∂x)2〉/θrms. Non-dimensionalization
by (∂2θ/∂x2)rms is also possible. This latter non-dimensionalization was not chosen

since (∂2θ/∂x2)rms/[〈(∂θ/∂x)2〉/θrms] scales as R
1/2
λ . Such a spurious Rλ-dependence

interferes with the verification of equation (3.14).
The last statistic to be discussed in this section is the expectation of the Laplacian

of the scalar jointly conditioned on the velocity and scalar fluctuations, 〈∇2θ|Vi, ψ〉.
〈∇2θ|Vi〉 was discussed above and 〈∇2θ|ψ〉 is discussed in Appendix B, where no
Reynolds number dependence is observed. In figures 15(a) and 15(b), the surrogate of
〈∇2θ|Vi, ψ〉, 〈∂2θ/∂x2|V , ψ〉, is respectively shown for two Reynolds numbers, Rλ = 85
and Rλ = 582. Two observations can be made. The first is that the shape of the
conditional expectation changes from ellipsoidal towards circular. This results from
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the aforementioned changing correlation coefficient between v and θ. The second
observation is the change in the slope of lines of constant ∂2θ/∂x2. At low Reynolds
numbers, these are negatively sloped. At high Reynolds numbers, the lines become
vertical. The latter effect results from the diminishing influence of the velocity on
scalar mixing as the Reynolds number increases. This same effect is what renders
the conditional expectations of 〈∂2θ/∂x2|V 〉 flat in the limit of large Rλ in figure 14.
Note that the (extreme) white and black zones that are close to each other are not
significant. These regions are multiple standard deviations away from the mean and
contain very few data points. Therefore, the value of ∂2θ/∂x2 in these zones has yet
to converge.

4. Conclusions
The evolution with Reynolds number of mixed velocity–passive scalar statistics was

studied over the range 85 6 Rλ 6 582 in decaying grid turbulence with an imposed
mean scalar gradient. The PDFs of the turbulent heat flux, vθ, exhibited exponential
tails, consistent with the quasi-joint-Gaussian nature of the mixed velocity–passive
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scalar statistics. The turbulent Nusselt number continually increased with Reynolds
number. However, the rate at which it did so was influenced by the value of the
correlation coefficient, ρvθ . For the Reynolds numbers considered, the ratio of the
mechanical to thermal time scale, R, was 1.28±0.07, roughly independent of Reynolds
number.

The mixed velocity–passive scalar co-spectra and structure functions developed
slowly, resembling more closely the velocity field than the scalar field. The inertial-
range scaling exponents (at the second order) were still significantly below the Kol-
mogorovian (in the 1941 sense) predictions for the largest Reynolds numbers. In this
limit, the heat flux co-spectrum inertial-range scaling exponent was ∼ −2.0, signifi-
cantly different from the theoretical prediction of −7/3. The inertial-range scaling
exponent of the heat flux structure structure functions, 〈∆v∆θ〉, was ∼ 1.0 – less than
the corresponding prediction of 4/3. The behaviour of the sixth-order longitudinal
mixed structure function, 〈(∆u)2(∆θ)4〉, exhibited inertial-range scaling exponents of
1.36–1.52 (or 1.55–1.67 when estimated by means of ESS). Though in approximate
agreement with the few other existing measurements of 〈(∆u)2(∆θ)4〉, the discrepancies
can most likely be attributed to (i) the different methods for determining the scaling
exponents, (ii) the effect of shear on the scalar field, and (iii) the repercussions of
mean scalar gradients, decay of the turbulence, etc. on the behaviour of 〈(∆u)2(∆θ)4〉.

All fine-scale statistics behaved in a manner consistent with local isotropy. That
is, quantities that should be zero in a locally isotropic flow – such as the correlation
coefficient between ∂v/∂x and ∂θ/∂x, ρ∂v/∂x,∂θ/∂x, the dissipation of vθ, 〈εvθ〉 – were
so, or decayed towards zero as the Reynolds number was increased. However, we
emphasize that for the assumption of local isotropy of the mixed velocity–scalar
field to be valid requires, for the measured fine-scale statistics studied herein, at least
Rλ > 200. At high Reynolds numbers, the PDFs of ∆v∆θ lost their asymmetry at
small scales (as required by local isotropy) and their tails broadened (reflecting the
effect of internal intermittency on the mixed velocity–passive scalar field).

Three mixed velocity–passive scalar conditional expectations (of immediate interest
to PDF modellers) were studied. An approximately linear behaviour of 〈v|ψ〉 (with
slope equal to ρvθ) independent of Reynolds number was observed. In contrast,
〈∂2θ/∂x2|Vi〉 exhibited a linear behaviour with a slope that tended towards zero in the
limit of large Reynolds numbers. This result validates the diffusivity independence
hypothesis (Taylor 1921; Pope 1998) and is also exhibited in the joint conditional
expectation 〈∇2θ|Vi, ψ〉. The effect of the imposed anisotropy is observed up to
significant Reynolds numbers (i.e. Rλ ∼ 500) and, to be accounted for in models,
requires consideration of the joint PDF of the velocity and the scalar.

It is re-emphasized that other statistics should be studied before local isotropy of the
mixed velocity–passive scalar field can be completely validated. Measurements that
include temperature differences or derivatives in the direction of the mean gradient
are required. Some statistics of this type were estimated in the direct numerical
simulations of Overholt & Pope (1996) and tended towards zero as the Reynolds
number was increased.

We also point out that no large-scale anisotropy was present in the velocity field
studied herein. The velocity field in homogeneous shear flow has been shown to exhibit
anisotropies (Shen & Warhaft 2000; Ferchichi & Tavoularis 2000; Warhaft & Shen
2001), though less prominent than those observed in the scalar field. It would therefore
also be of interest to determine whether such velocity field anisotropies contaminate
the mixed field – particularly since the mixed statistics more closely resemble those of
the velocity than the scalar in their evolution.
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Appendix A. Comparison of the scaling exponents of 〈(∆u)2(∆θ)4〉 with
model predictions

It is of interest to compare the scaling exponent of 〈(∆u)2(∆θ)4〉 for our highest
Reynolds number (Rλ = 582) with the prediction of two models. The first model,
suggested by Xu et al. (2000a), assumes a bivariate, joint-lognormal distribution
between εr and εθr (where the subscript r indicates averaging over a sphere of
radius r, which we approximate by averaging over a linear distance r). Making this
assumption, one obtains (Xu et al. 2000a)

ζuθ(m, n) = ζu(m) + ζθ(n) +
µ1/2

18
(µ1/2 − 3ρµ

1/2
θ )mn, (A 1)

where ζu(m) is the scaling exponent of the mth-order velocity structure function, ζθ(n)
is the scaling exponent of the nth-order scalar structure function, ζuθ(m, n) is the
scaling exponent of the (m + n)th-order mixed mth-order velocity/nth-order scalar
structure function, ρ is the centred correlation coefficient between ln(εr) and ln(εθr ),
µ is the velocity intermittency exponent and µθ , as already mentioned, is the scalar
intermittency exponent.

Before proceeding, we briefly digress and discuss the intermittency exponents. At
Rλ = 582, µ and µθ were determined to be 0.12 and 0.25 respectively (from the
non-centred autocorrelations of the dissipations – see M&W96 and M&W98). (µ was
found to be a strong function of the Reynolds number in M&W96 and, in the limit
of high Reynolds number, is thought to be 0.25 ± 0.05 (Sreenivasan & Kailasnath
1993).) The value of µθ has not received the same amount of attention. Estimates of
µθ vary from 0.17 (Xu et al. 2000a), to 0.25 (e.g. M&W98, Chambers & Antonia 1984)
to 0.35 (e.g. Prasad, Meneveau & Sreenivasan 1988; Sreenivasan, Antonia & Danh
1977). We remark that the value of µθ obtained in M&W98 (0.25) is not consistent
with the value obtained from the sixth-order longitudinal mixed structure function at
Rλ = 582 (i.e. µθ = 2− ζuθ(2, 4) = 2− 1.52 = 0.48). This discrepancy may arise from
the various methods by which µθ (or µ) can be estimated. The different approaches to
the calculation of µ were discussed in Sreenivasan & Kailasnath (1993). Some of these
methods become equivalent in the limit of high Reynolds number. Since the velocity
field has not yet reached its high-Reynolds-number limit by Rλ ∼ 600 (M&W96), this
may perhaps explain the discrepancy. However, as with 〈(∆u)2(∆θ)4〉, this requires
further study.

In addition, µθ , as determined from 〈(∆u)2(∆θ)4〉, may differ from other estimates
of µθ due to the effects of (i) decay of the turbulence and (ii) turbulent production of
temperature fluctuations. In Danaila et al. (1999) and Danaila & Mydlarski (2001),
respectively, it was shown that both these phenomena had a significant effect on
〈∆u(∆θ)2〉. It was these effects that caused inertial-range deviations of 〈∆u(∆θ)2〉 from
Yaglom’s (1949) prediction of −(4/3)〈εθ〉r; the smaller the Reynolds number, the
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larger the deviation. For very low Reynolds numbers (i.e. Rλ < 50), the deviation even
penetrated into the dissipative range. There is no reason to expect that the same two
phenomena are not affecting 〈(∆u)2(∆θ)4〉, and thus the determination of µθ from the
structure function. What is unclear, however, is if and how the decay and production
affect estimates of µθ as estimated by other methods, such as the autocorrelation of
the dissipation. The effect could be equivalent, but this has yet to be shown.

We now return to the calculation of ζuθ(2, 4) by means of equation (A 1). The
value of ρ was estimated for two different inertial-range separations, ra and rb. These
correspond to the middle of the inertial-range when the spectrum is plotted in linear
and logarithmic coordinates, respectively. (This is explained in detail in M&W96. Note
that rb > ra.) For ε determined from ε = 15ν(∂u/∂x)2, ρ = ρln(εra ),ln(εθra ) = 0.22 and

ρ = ρln(εrb ),ln(εθrb
) = 0.17. For ε determined from ε = 7.5ν(∂v/∂x)2, ρ = ρln(εra ),ln(εθra ) =

0.20 and ρ = ρln(εrb ),ln(εθrb
) = 0.13. This agrees well with the results of Meneveau et

al. (1990) (ρ ≈ 0.13) and Xu et al. (2000a) (ρ ≈ 0.15). Here we will use ρ = 0.15
(the average of the two estimates of ρ for the rb separation. We choose the rb
separation since the scaling regions of the structure functions are studied in log–log
coordinates – therefore rb is the ‘middle separation’ in this case.) Using the values of µ
and µθ from M&W98 (0.12 and 0.25, respectively) in conjunction with ζu(2) = 0.61 and
ζθ(4) = 0.94†, one obtains ζuθ(2, 4) = 1.57 for Rλ = 582. This is close to our empirically
determined value of ζuθ(2, 4) = 1.52. (We remark that using µ = µθ = 0.25 equation
(A 1) predicts ζuθ(2, 4) = 1.61.) The log-normal model therefore serves to validate the
present estimates of ζuθ(2, 4) and reinforce our observation that ζuθ(2, 4) 6= 2− µθ , for
µθ estimated from non-centred autocorrelations of εθ .

Similar results are obtained with the hierarchical structure model of Lévêque
et al. (1999) (based on the analogous model of She & Lévêque (1994) for the
velocity field). In their model, scaling exponents of 〈εpθr〉 are expressed in terms
of the scaling exponents of a hierarchy of fluctuation levels. The resulting model
has two independent parameters – one is experimentally determined and the other is
established from phenomenological arguments. The result is a prediction for Ψp, the
scaling exponent of 〈|(∆u(r))(∆θ(r))2|p/3〉:

Ψp =
p

9
+

10

9

(
1−

(
2

5

)p/3)
. (A 2)

The prediction for Ψ6 is 1.60 – a value close to the previous prediction of ζuθ(2, 4) =
1.57 and our empirically determined value of 1.52. (ζuθ(2, 4), as defined by the model
of Xu et al. (2000a), is equivalent to Ψ6.)

Appendix B. Scalar conditional expectations
In equations (3.11) and (3.12), the conditional expectations 〈εθ|ψ〉 and 〈∇2θ|ψ〉,

which describe the effects of molecular diffusion, appear. These are not mixed velocity–
passive scalar statistics and are therefore discussed in this Appendix.

Measurements of the conditional scalar dissipation, 〈εθ|ψ〉, have been obtained by
other authors (e.g. Jayesh & Warhaft 1992; Kailasnath, Sreenivasan & Saylor 1993;
Anselmet, Djeridi & Fulachier 1994; Mi, Antonia & Anselmet 1995). In accordance

† ζu(2) = 0.69 and ζθ(4) = 1.03 when determined by ESS conditioned on |(∆u)3| and |∆u(∆θ)2|,
respectively. When these values are used, the prediction of the log-normal model is not as accurate
as when directly determined exponents are used.
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Figure 16. A typical expectation of the (surrogate of the) scalar dissipation rate conditioned on
the scalar fluctuation. Rλ = 582.

with the theoretical results of Sinai & Yakhot (1989), O’Brien & Jiang (1991), Ching
(1993) and Pope & Ching (1993), (i) a Gaussian PDF of the scalar is associated
with εθ and θ being independent (e.g. Anselmet et al. 1994, figure 9b) and (ii) a
super-Gaussian PDF of the scalar is associated with a rounded (concave-up) V-shape
(e.g. Jayesh & Warhaft 1992). Jayesh & Warhaft (1992) noted that even though the
underlying assumptions of self-similar flow with no mean gradient were not met,
the results of Sinai & Yakhot (1989) compare well with the data. This was later
explained by Pope & Ching (1993) who showed that a similar, and in one sense,
more general, result to that of Sinai & Yakhot (1989) can be obtained by assuming
a smooth stationary process (with a PDF decaying sufficiently rapidly for large
fluctuations) and linearity of the conditional expectation of the second derivative
of the aforementioned process. The latter assumption is equivalent to 〈∇2θ|ψ〉 being
linear, if Taylor’s hypothesis and local isotropy are valid. (In their derivation, Sinai &
Yakhot (1989) assumed a homogeneous decaying field with no mean gradient that was
governed by the advection–diffusion equation.) The agreement between the theoretical
work of Sinai & Yakhot (1989) and the experiments of Jayesh & Warhaft (1992) was
alternatively explained by Cai, O’Brien & Ladeinde (1996) and Sabel’nikov (1998),
who extended the results of Sinai & Yakhot (1989) to the case of grid turbulence with
an imposed mean scalar gradient. Here, the PDF of the scalar is shown to depend
on the conditional scalar dissipation, 〈εθ|ψ〉, and the conditional expectation of the
velocity fluctuation in the direction of the gradient, 〈v|ψ〉. It is shown that if the latter
conditional expectation is linear (as was shown to approximately be the case in the
present flow), then the PDF of the scalar does not explicitly depend on the mean
scalar gradient. Linearity of 〈v|ψ〉 and 〈∇2θ|ψ〉 are related (see O&P or Sabel’nikov
(1998)). Below, we will show that 〈∂2θ/∂x2|ψ〉, a surrogate for 〈∇2θ|ψ〉, is also linear.

In the present work, where the PDF of the scalar is sub-Gaussian, the scalar
dissipation (approximated by (∂θ/∂x)2) conditioned on the scalar has a concave-
down, rounded V-shape, as shown in figure 16. (Such a result was typical for all
Reynolds numbers. The peak of the curve is 1.3 ± 0.1 for all the Reynolds numbers.)
Such a shape for 〈εθ|θ〉 is consistent with the above-mentioned theoretical results and
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Figure 17. The expectation of ∂2θ/∂x2 conditioned on the temperature fluctuation:
©, Rλ = 85; ×, Rλ = 197; �, Rλ = 407; +, Rλ = 582.

a sub-Gaussian PDF of the scalar. The physical interpretation of this result is that
large values of the scalar fluctuation are associated with low values of the scalar
dissipation. This is in direct contrast with the work of Jayesh & Warhaft (1992).
There, the ratio of the wind tunnel width to the integral length scale was much larger
than for the present data. Thus, in the present work, the temperature fluctuations
are bounded. Such a limitation in temperature results in low values of the scalar
dissipation being associated with the extreme temperature fluctuations. One would
expect a similar shape for 〈εθ|θ〉 in a scalar mixing layer (e.g. Ma & Warhaft 1986).
In such a flow, the scalar field is bounded by the temperatures of its two constituent
streams. The resulting scalar PDF is also sub-Gaussian (Ma & Warhaft 1986).

Figure 17 presents the conditional expectation of ∂2θ/∂x2 on θ. It can be considered
a surrogate for the Laplacian of the temperature field, ∇2θ, conditioned on the
scalar fluctuation, which appears in the equation for the scalar PDF. Like 〈εθ|ψ〉,
〈∇2θ|ψ〉 results from the effects of molecular diffusion. The conditional expectations
in figure 17 are linear with negative slope in their inner region, where the data are
better converged. There is no distinguishable Reynolds number dependence in the
slopes of the conditional expectations. O&P observed a similar behaviour of 〈∇2θ|θ〉.
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